# MODULE - VI 

## PRANDTL'S METHOD

## TORSION OF THIN WALLED TUBES

## TORSION OF MULTIPLY CONNECTED CELLS

## PRANDTL'S METHOD

## FOR THE TORSION ANALYSIS OF SOLID SHAFT

## TORSION OF NON-CIRCULAR BARS:

## Prandtl's Stress Function Method

Prandtl's Stress function $\phi$ is defined as

$$
\begin{equation*}
\tau_{\mathrm{zx}}=\frac{\partial \Phi}{\partial y} \quad \tau_{\mathrm{zy}}=-\frac{\partial \Phi}{\partial \mathrm{x}} \tag{1}
\end{equation*}
$$

When, $\quad \sigma_{\mathrm{xx}}=\sigma_{\mathrm{yy}}=\sigma_{\mathrm{zz}}=\mathbf{0} ; \tau_{\mathrm{xy}}=0 ; \tau_{\mathrm{zx}}$ and $\tau_{\mathrm{zy}}$ are the only non vanishing components of stress the equations of elasticity are given below

## Equilibrium Equation

$$
\begin{array}{ll}
\frac{\partial \tau_{\mathrm{zx}}}{\partial \mathrm{z}}=\frac{\partial \tau_{\mathrm{zy}}}{\partial \mathrm{z}}=0 & \begin{array}{l}
\text { (Since the stresses are same in every cross } \\
\text { section) }
\end{array} \\
\frac{\partial \tau_{\mathrm{zx}}}{\partial \mathrm{x}}+\frac{\partial \tau_{\mathrm{zy}}}{\partial \mathrm{y}}=0 & \begin{array}{l}
\text { (From the third equilibrium equation) }
\end{array} \\
21 \text { st March 2017 } & \begin{array}{l}
\text { Presented to S4 ME students of RSET } \\
\text { by Dr. Manoj } G \text { Tharian }
\end{array}
\end{array}
$$

## TORSION OF NON-CIRCULAR BARS:

## Hooke's Law

The strain components $\varepsilon_{\mathrm{xx}}=\varepsilon_{\mathrm{yy}}=\varepsilon_{\mathrm{zz}}=\gamma_{\mathrm{xy}}=\mathbf{0}$

$$
\begin{aligned}
& \gamma_{\mathrm{zy}}=\frac{1}{\mathrm{G}} \cdot \tau_{\mathrm{zy}} \\
& \gamma_{\mathrm{zx}}=\frac{1}{\mathrm{G}} \cdot \tau_{\mathrm{zx}}
\end{aligned}
$$

Substituting for stress components $\tau_{\mathrm{zx}}$ and $\tau_{\mathrm{yz}}$ from equ. 1

$$
\begin{gather*}
\gamma_{\mathrm{zy}}=-\frac{1}{\mathrm{G}} \cdot \frac{\partial \Phi}{\partial \mathrm{x}}  \tag{2}\\
\gamma_{\mathrm{zx}}=\frac{1}{\mathrm{G}} \cdot \frac{\partial \Phi}{\partial \mathrm{y}}
\end{gather*}
$$

## TORSION OF NON-CIRCULAR BARS:

## Compatibility Equation

The two relevant Compatibility equations for this problem are

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\frac{\partial \gamma_{\mathrm{zx}}}{\partial y}+\frac{\partial \gamma_{\mathrm{xy}}}{\partial \mathrm{z}}-\frac{\partial \gamma_{\mathrm{yz}}}{\partial \mathrm{x}}\right)=2 \frac{\partial^{2} \varepsilon_{\mathrm{xx}}^{0}}{\partial y \partial \mathrm{z}} \\
& \frac{\partial}{\partial y}\left(\frac{\partial y_{\mathrm{xy}}}{\partial \mathrm{z}}+\frac{\partial \gamma_{\mathrm{yz}}}{\partial \mathrm{x}}-\frac{\partial \gamma_{\mathrm{zx}}}{\partial y}\right)=2 \frac{\partial^{2} \varepsilon_{\mathrm{yy}}}{\partial \mathrm{x} \partial \mathrm{z}} \\
& \frac{\partial}{\partial \mathrm{x}}\left(\frac{\partial \gamma_{\mathrm{zx}}}{\partial y}-\frac{\partial \gamma_{\mathrm{yz}}}{\partial \mathrm{x}}\right)=0 \\
& \frac{\partial}{\partial y}\left(\frac{\partial \gamma_{\mathrm{yz}}}{\partial \mathrm{x}}-\frac{\partial \gamma_{\mathrm{zx}}}{\partial y}\right)=0
\end{aligned}
$$

## TORSION OF NON-CIRCULAR BARS:

Substituting for $\gamma_{y z}$ and $\gamma_{x z}$ from equ. (2) the above two equs becomes

$$
\begin{align*}
& \frac{\partial}{\partial \mathrm{x}}\left(\frac{\partial^{2} \Phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}\right)=0 \\
& \frac{\partial}{\partial y}\left(\frac{\partial^{2} \Phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}\right)=0 \\
& \frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=F(a \text { constant }) \tag{3}
\end{align*}
$$

## TORSION OF NON-CIRCULAR BARS:

## Boundary Condition

This gives

$$
\mathbf{n}_{\mathrm{x}} \tau_{\mathrm{xz}}+\mathbf{n}_{\mathrm{y}} \tau_{\mathrm{yz}}+\mathbf{n}_{\mathrm{z}} \stackrel{\sigma}{\mathrm{zz}}^{0}=\mathrm{F} /{ }_{\mathrm{z}}^{0}
$$

$$
\begin{aligned}
& n_{x} \frac{\partial \Phi}{\partial y}-n_{y} \frac{\partial \Phi}{\partial x}=0 \\
& \frac{\partial \Phi}{\partial y} \frac{d y}{d s}+\frac{\partial \Phi}{\partial x} \frac{d x}{d s}=0
\end{aligned}
$$

$$
\frac{\mathrm{d} \Phi}{\mathrm{ds}}=0
$$

$\Phi$ is a constant around the boundary.

## TORSION OF NON-CIRCULAR BARS:

For a solid section, $\Phi=0$
around the boundary
On the end faces moment about O should be equal to the applied torque.

$$
\begin{aligned}
T & =\iint_{R}\left(\tau_{y z} \mathbf{x}-\tau_{x z} \mathbf{y}\right) \mathbf{d x} \cdot \mathbf{d y} \\
& =-\iint_{R}\left(\mathbf{x} \frac{\partial \Phi}{\partial x}+\mathbf{y} \frac{\partial \Phi}{\partial y}\right) \mathbf{d x} \cdot \mathbf{d y} \\
& =-\iint_{R}\left[\left(\frac{\partial(\Phi x)}{\partial x}+\frac{\partial(\Phi y)}{\partial y}\right)-\mathbf{2} \Phi\right] \mathbf{d x} \cdot \mathbf{d y} \\
& =-\iint_{R}\left[\left(\frac{\partial(\Phi x)}{\partial x}+\frac{\partial(\Phi y)}{\partial y}\right)\right] d x \cdot d y+\iint_{R} 2 \Phi d x d y
\end{aligned}
$$

## TORSION OF NON-CIRCULAR BARS:

Using Gauss theorem,

$$
\mathrm{T}=\oint_{\mathrm{S}}\left[\Phi \cdot \mathrm{x} \cdot \mathrm{n}_{\mathrm{x}}+\Phi \cdot \mathrm{y} \cdot \mathrm{n}_{\mathrm{y}}\right] \mathrm{dxdy}+\iint_{\mathrm{R}} 2 \Phi \mathrm{dxdy}
$$

Since $\Phi$ is zero around the boundary the first integral becomes zero and the above equation becomes

$$
\begin{equation*}
T=\iint_{R} 2 \Phi d x d y \tag{II}
\end{equation*}
$$

To find out the constant $F$ in equ 3 , taking LHS of equ 3 we get

$$
\frac{\partial^{2} \Phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Phi}{\partial \mathrm{y}^{2}}=\mathbf{G}\left[\frac{\partial \gamma_{\mathrm{zx}}}{\partial \mathrm{y}}-\frac{\partial \gamma_{\mathrm{yz}}}{\partial \mathrm{x}}\right]
$$

## TORSION OF NON-CIRCULAR BARS:

$$
\begin{aligned}
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}} & =G\left(\frac{\partial}{\partial y}\left[\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right]-\frac{\partial}{\partial x}\left[\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right]\right) \\
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}} & =G\left(\frac{\partial}{\partial z}\left[\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right]\right) \\
& =G \frac{\partial}{\partial z}\left[-2 \omega_{z}\right]
\end{aligned}
$$

Where $\omega_{z}$ is the rotation of the element at ( $x, y$ ) about the $z$ axis.
$\frac{\partial}{\partial z}\left[\omega_{z}\right]$ is the rotation per unit length denoted by $\theta$

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=-2 G \theta \tag{III}
\end{equation*}
$$

## TORSION OF NON-CIRCULAR BARS:

Summary of Prandtls Method:
$\Phi$ is a constant around the boundary.
For a solid section, around the boundary

$$
\begin{gather*}
\Phi=0 \\
\mathbf{T}=\iint_{\mathbf{R}} 2 \Phi \mathrm{dxdy} \\
\frac{\partial^{2} \emptyset}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \emptyset}{\partial \mathrm{y}^{2}}=-2 \mathrm{G} \theta
\end{gather*}
$$

$$
\tau_{\mathrm{zx}}=\frac{\partial \Phi}{\partial \mathrm{y}} \quad \tau_{\mathrm{zy}}=-\frac{\partial \Phi}{\partial \mathrm{x}}
$$

21st March 2017

## TORSION OF NON-CIRCULAR BARS:

## Prandtl's Membrane Analogy



## TORSION OF NON-CIRCULAR BARS:

Prandtl's membrane analogy is very much useful for solving torsion problems involving complicated shapes. Consider a thin homogeneous membrane (like rubber) stressed with uniform tension and fixed at its edges which is having the same shape as the cross section of the shaft in the xy plane.

When the membrane is subjected to uniform lateral pressure $P$ it undergoes a small displacement $Z$, where $Z$ is a function $x \& y$

Consider the equilibrium of an infinitesimal element $A B C D$ of the membrane after deformation. Let $F$ be the uniform tension per unit length of the membrane.

## TORSION OF NON-CIRCULAR BARS:

The value of the initial tension is large enough to ignore its changes when the membrane is blown up by a small pressure.

Force on face $A D=F \times \Delta y$
Angle made by this force with $x$ axis is $\beta$
Slope of $A B=\tan \beta=\frac{\partial z}{\partial x}$
Hence the component of $F \Delta y$ along $z$ axis $=F \Delta y \frac{\partial z}{\partial x}$
(for very small angle $\operatorname{Sin} \beta=\tan \beta$ )
Force on $B C=F x \Delta y$
Angle made by this face with $x$ axis is $\beta+\Delta \beta$

## TORSION OF NON-CIRCULAR BARS:

Slope at $B=\frac{\partial z}{\partial x}+\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \Delta x$
The component of the force in the $z$ direction is $F \Delta y\left[\frac{\partial z}{\partial x}+\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \Delta x\right]$
Similarly the component of force $F \Delta x$ acting on faces $A B$ and $C D$ are

$$
F \Delta x \frac{\partial z}{\partial y} \text { and } F \Delta x\left[\frac{\partial z}{\partial y}+\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) \Delta y\right]
$$

The resultant force in the $z$ direction is

$$
\begin{gathered}
-F \Delta y \frac{\partial z}{\partial x}+F \Delta y\left[\frac{\partial z}{\partial x}+\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \Delta x\right]-F \Delta x \frac{\partial z}{\partial y}+F \Delta x\left[\frac{\partial z}{\partial y}+\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) \Delta y\right] \\
=F \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}} \Delta x \Delta y \\
21 \text { st March } 2017 \quad \begin{array}{c}
\text { Presented to S4 ME students of RSET } \\
\text { by Dr. Manoj G Tharian }
\end{array}
\end{gathered}
$$

## TORSION OF NON-CIRCULAR BARS:

The force due to the pressure P acting on the membrane element $A B C D$ is $P \Delta x \Delta y$.

For equilibrium

$$
\begin{aligned}
& F\left[\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right] \Delta x \Delta y=-P \Delta x \Delta y \\
& \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=-\frac{P}{F}
\end{aligned}
$$

Comparing the above equ. With the Prandt's Torsion equ.

$$
\frac{\partial^{2} \emptyset}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \emptyset}{\partial \mathrm{y}^{2}}=-2 \mathrm{G} \theta
$$

## TORSION OF NON-CIRCULAR BARS:

If we adjust the membrane tension $F$ or the air pressure $P$ such that P/F becomes numerically equal to $2 G \theta$ the above two equations becomes identical.

If the membrane height $z$ remains zero at the boundary contour of the section, then the height $z$ of the membrane becomes numerically equal to the torsion stress function.

The slopes of the membrane are then equal to the shear stresses. The twist moment is numerically equal to twice the volume under the membrane.

$$
\tau_{\mathrm{zx}}=\frac{\partial \Phi}{\partial y} \quad \tau_{\mathrm{zy}}=-\frac{\partial \Phi}{\partial \mathrm{x}} \quad \mathrm{~T}=\iint_{\mathrm{R}} 2 \Phi \mathrm{dxdy}
$$

## TORSION OF NON-CIRCULAR BARS:



A steel plate with a square hole was used. Rubber sheet was rigidly clamped at the edges of the hole and made to bulge by applying pressure from beneath the plate. The resulting bulges (torsional hills) for the square hole is shown in Figures.

## TORSION OF NON-CIRCULAR BARS:

Solving Torsion of Elliptical Shaft Using Prandtls Method:
The torsion equ $\frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}=-2 \mathrm{G} \theta$ and boundary condition $\boldsymbol{\Phi}=\mathbf{0}$ are satisfied by assuming:

$$
\emptyset=m\left[\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right]
$$

Where $m$ is constant whose value has to be determined.

$$
\begin{aligned}
& \nabla^{2} \emptyset=\frac{\partial^{2} \emptyset}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \emptyset}{\partial \mathrm{y}^{2}}=-2 \mathrm{G} \theta \\
& \frac{\partial \emptyset}{\partial \mathrm{x}}=\mathrm{m}\left(\frac{2 \mathrm{x}}{\mathrm{a}^{2}}\right) \quad \frac{\partial^{2} \emptyset}{\partial \mathrm{x}^{2}}=\frac{2 \mathrm{~m}}{\mathrm{a}^{2}} \\
& \frac{\partial \emptyset}{\partial \mathrm{y}}=\mathrm{m}\left(\frac{2 \mathrm{y}}{\mathrm{~b}^{2}}\right) \quad \frac{\partial^{2} \emptyset}{\partial \mathrm{y}^{2}}=\frac{2 \mathrm{~m}}{\mathrm{~b}^{2}}
\end{aligned}
$$

## TORSION OF NON-CIRCULAR BARS:

Substituting in the torsion equation we get

$$
2 \mathrm{~m}\left(\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\right)=-2 \mathrm{G} \theta \quad \mathrm{~m}=-\left(\frac{\mathrm{a}^{2} b^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \mathrm{G} \theta
$$

Substituting for $m$ in the expression for $\phi$ :

$$
\emptyset=-\left(\frac{a^{2} b^{2}}{a^{2}+b^{2}}\right)\left[\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right] \mathrm{G} \theta
$$

The shear stress components are:

$$
\begin{gathered}
\tau_{\mathrm{zx}}=\frac{\partial \emptyset}{\partial \mathrm{y}}=-\left(\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \frac{2 \mathrm{y}}{\mathrm{~b}^{2}} \mathrm{G} \theta=-\left(\frac{2 \mathrm{a}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \mathrm{G} \theta y \\
\tau_{\mathrm{zy}}=-\frac{\partial \emptyset}{\partial \mathrm{x}}=\left(\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \frac{2 \mathrm{x}}{\mathrm{~b}^{2}} \mathrm{G} \theta=\left(\frac{2 \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \mathrm{G} \theta x
\end{gathered}
$$

## TORSION OF NON-CIRCULAR BARS:

Resultant stress is given by:

$$
\tau=\sqrt{\tau_{\mathrm{yz}}^{2}+\tau_{\mathrm{xz}}^{2}}=\frac{ \pm 2 \mathrm{G} \theta}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \sqrt{\mathrm{a}^{4} \mathrm{y}^{2}+\mathrm{b}^{4} \mathrm{x}^{2}}
$$

Equating the moment due to shear stress to the external torque:

$$
\begin{aligned}
\mathrm{T} & =\iint_{\mathrm{A}}\left(\tau_{\mathrm{zy}} \mathrm{x}-\tau_{\mathrm{zx}} \mathrm{y}\right) \mathrm{dA} \\
\mathrm{~T} & =\iint_{\mathrm{A}}\left(\left(\frac{2 \mathrm{~b}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \mathrm{G} \theta x^{2}+\left(\frac{2 \mathrm{a}^{2}}{\mathrm{a}^{2}+\mathrm{b}^{2}}\right) \mathrm{G} \theta y^{2}\right) \mathrm{dA} \\
& =\frac{2 \mathrm{G} \theta}{\mathrm{a}^{2}+\mathrm{b}^{2}} \iint_{\mathrm{A}}\left(\mathrm{a}^{2} y^{2}+\mathrm{b}^{2} x^{2}\right) \mathrm{dA}
\end{aligned}
$$

## TORSION OF NON-CIRCULAR BARS:

We know that,

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{yy}}=\iint_{\mathrm{A}} x^{2} \mathrm{dA} & \mathrm{I}_{\mathrm{yy}}=\frac{\pi \mathrm{ba}^{3}}{4} \\
\mathrm{I}_{\mathrm{xx}}=\iint_{\mathrm{A}} y^{2} \mathrm{dA} & \mathrm{I}_{\mathrm{xx}}=\frac{\pi \mathrm{ab}^{3}}{4}
\end{array}
$$

## TORSION OF THIN WALLED TUBES:

## Torsion of Thin Walled Tubes



27th Aprl 2017
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

## TORSION OF THIN WALLED TUBES:

Force acting on the elementary length $\Delta S$

$$
\begin{aligned}
\Delta F & =\boldsymbol{\tau} \mathbf{t} \Delta \mathbf{S} \\
& =\mathbf{q} \Delta \mathbf{S}
\end{aligned}
$$

Torque due to the shear stress on the elemental length

$$
\begin{aligned}
\Delta T & =\mathbf{q} \Delta \mathbf{S h} . \\
& =2 \mathbf{q} \Delta A
\end{aligned}
$$

$\Delta \mathrm{A}$ is the area of the triangle enclosed at O by the $\operatorname{arc} \Delta \mathrm{S}$. Hence the total torque,

$$
\begin{aligned}
T & =\sum 2 \mathbf{q} \Delta A \\
& =2 \mathbf{q A}
\end{aligned}
$$

## TORSION OF THIN WALLED TUBES:

Strain energy stored due to torsion of elemental length

$$
\begin{aligned}
\Delta U & =\frac{1}{2}(\tau t \Delta S) \delta \\
& =\frac{1}{2}(\tau t \Delta S) \gamma \Delta l \\
& =\frac{1}{2}(\tau t \Delta S) \frac{\tau}{G} \Delta l \\
& =\frac{\mathrm{q}^{2} \Delta l}{2 G} \frac{\Delta S}{t}
\end{aligned}
$$

The total strain energy for the tube per unit length

$$
\mathbf{U}=\frac{\mathbf{T}^{2}}{\mathbf{8} \mathbf{A}^{2} \mathbf{G}} \oint \frac{\mathbf{d s}}{\mathbf{t}} \quad(\text { since } T=2 q A)
$$

## TORSION OF THIN WALLED TUBES:

Twist per unit length $(\Delta I=1)$

$$
\begin{aligned}
& \theta=\frac{d U}{d T} \\
& \theta=\frac{d}{d T}\left(\frac{T^{2}}{8 A^{2} G} \oint \frac{d s}{t}\right)
\end{aligned}
$$

$$
\theta=\frac{\mathrm{q}}{2 \mathrm{AG}} \oint \frac{\mathrm{ds}}{\mathrm{t}}
$$

(since $\mathbf{T}=\mathbf{2 q A}$ ) energy ' $U$ ' of a linearly elastic structure is expressed as function of generalized force $Q_{i}$, then the first partial derivative of $U$ with respect to any one of the generalized force $Q_{i}$ is equal to the corresponding generalized displacement $q_{i}$.

## TORSION OF THIN WALLED TUBES:

## Torsion of Thin Walled Multiple Cell Closed Sections



Torque for the entire section, $T=T_{1}+T_{2}$

$$
\begin{equation*}
T=2 A_{1} q_{1}+2 A_{2} q_{2} \tag{1}
\end{equation*}
$$

(Bredt Batho Equ)
Then $\mathbf{2 G} \boldsymbol{\theta}=\frac{\mathbf{1}}{\mathbf{A}} \oint \frac{\mathbf{q d s}}{\mathbf{t}}$

## TORSION OF THIN WALLED TUBES:

Let,

$$
\begin{array}{ll}
\mathbf{a}_{1}=\oint \frac{\mathrm{ds}}{\mathbf{t}} & \text { for cell1 including web } \\
\mathbf{a}_{2}=\oint \frac{\mathbf{d s}}{\mathbf{t}} & \text { for cell } 2 \text { including web } \\
\mathbf{a}_{12}=\oint \frac{\mathbf{d s}}{\mathbf{t}} & \text { for web }
\end{array}
$$

Then for cell 1 and cell 2 equ can be written as

$$
\begin{align*}
2 G \theta & =\frac{1}{A_{1}}\left[a_{1} q_{1}-a_{12} q_{2}\right]  \tag{2}\\
2 G \theta & =\frac{1}{A_{2}}\left[a_{2} q_{2}-a_{12} q_{1}\right] \tag{3}
\end{align*}
$$

Equs 1, $2 \& 3$ can be used to find out $q_{1}, q_{2}, \& q_{3}$

## TORSION OF THIN WALLED TUBES:

$$
\begin{gather*}
T=2 A_{1} q_{1}+2 A_{2} q_{2}  \tag{1}\\
2 G \theta=\frac{1}{A_{1}}\left[a_{1} q_{1}-a_{12} q_{2}\right]  \tag{2}\\
2 G \theta=\frac{1}{A_{2}}\left[a_{2} q_{2}-a_{12} q_{1}\right] \tag{3}
\end{gather*}
$$

## TORSION OF THIN WALLED TUBES:

A two cell thin walled box as shown in fig below is subjected to a torque of $10000 \mathrm{~N}-\mathrm{m}$ Determine the internal shear flow, the stresses at points $A, B$ and $C$. Also find the angle of twist of per unit length. $A_{1}=$ $680 \mathrm{~cm}^{2} ; \mathrm{A}_{2}=2000 \mathrm{~cm}^{2}$ and $\mathrm{G}=80 \times 10^{6} \mathrm{kPa}$


## TORSION OF THIN WALLED TUBES:

A two cell thin walled box as shown in fig below is subjected to a torque of $10000 \mathrm{~N}-\mathrm{m}$ Determine the internal shear flow, the stresses at points $A, B$ and $C$. Also find the angle of twist of per unit length. $A_{1}=$ $680 \mathrm{~cm}^{2} ; \mathrm{A}_{2}=2000 \mathrm{~cm}^{2}$ and $\mathrm{G}=80 \times 10^{6} \mathrm{kPa}$
$2 \mathrm{G} \theta=\frac{1}{\mathrm{~A}_{1}}\left[\mathrm{a}_{1} \mathrm{q}_{1}+\mathrm{a}_{12} \mathrm{q}_{2}\right] \quad \mathrm{T}=2 \mathrm{~A}_{1} \mathrm{q}_{1}+2 \mathrm{~A}_{2} \mathrm{q}_{2}$
$2 \mathrm{G} \theta=\frac{1}{\mathrm{~A}_{2}}\left[\mathrm{a}_{2} \mathrm{q}_{2}+\mathrm{a}_{12} \mathrm{q}_{1}\right] \quad \mathrm{q}_{1}=14940 \mathrm{~N} / \mathrm{m}$
$q_{1}=0.75 q_{2}$
$\mathrm{q}_{2}=19920.3 \mathrm{~N} / \mathrm{m}$
$\tau_{\mathrm{A}}=24.9 \mathrm{MPa} \quad \tau_{\mathrm{B}}=5.534 \mathrm{MPa} \quad \tau_{\mathrm{C}}=22.13 \mathrm{MPa}$
$\theta=1.36$ radians per m
27th Aprl 2017
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

## TORSION OF THIN WALLED TUBES:

Determine the shear stress induced and the angle of twist per unit length of a hollow shaft of dimensions $80 \mathrm{~mm} \times 40 \mathrm{~mm}$ and wall thickness 5 mm when subjected to a torque of $1 \mathrm{kN}-\mathrm{m} . \mathrm{G}=1.3 \times 10^{4}$ MPa.

$$
\begin{aligned}
\mathrm{T} & =2 \mathrm{qA} \\
\boldsymbol{\theta} & =\frac{\mathbf{q}}{2 \mathrm{AG}} \oint \frac{\mathrm{ds}}{\mathbf{t}}
\end{aligned}
$$



## TORSION OF THIN WALLED TUBES:

Determine the shear stress induced and the angle of twist per unit length of a hollow shaft of dimensions $80 \mathrm{~mm} \times 40 \mathrm{~mm}$ and wall thickness 5 mm when subjected to a torque of $1 \mathrm{kN}-\mathrm{m} . \mathrm{G}=1.3 \times 10^{4}$ MPa.

$$
\begin{aligned}
\mathrm{A} & =3.2 \times 10^{-3} \\
\mathrm{q} & =\frac{\mathrm{T}}{2 \mathrm{~A}}=156250 \mathrm{~N} / \mathrm{m} \\
\tau & =\frac{\mathrm{q}}{\mathrm{t}}=31.25 \mathrm{MPa} \\
2 \mathrm{G} \theta & =\frac{\mathrm{q}}{\mathrm{~A}} \oint \frac{\mathrm{dS}}{\mathrm{t}}=\frac{156250}{3.2 \times 10^{-3}} \times 48
\end{aligned}
$$



## TORSION OF THIN WALLED TUBES:

Torsion of Bars with Rectangular Sections


Consider a rectangular bar subjected to a torque $T$. The thickness $t$ be small compared to the width $b$. The section consists of only one boundary and the value of the stress function $\phi$ around this boundary is zero.

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=-2 G \theta
$$

## TORSION OF THIN WALLED TUBES:

The stress function is taken independent of $x$ i.e., $\phi(x, y)=\phi(y)$.

$$
\frac{\partial^{2} \Phi}{\partial y^{2}}=-2 G \theta
$$

Integrating,

$$
\Phi=-G \theta y^{2}+a_{1} y+a_{2}
$$

Since $\Phi=0$ at the boundary, $\Phi=0$ at

$$
y= \pm t / 2
$$

Substituting

$$
\begin{aligned}
& \mathbf{a}_{1}=0 \& \mathbf{a}_{2}=\frac{\mathbf{G \theta t}^{2}}{4} \\
& \Phi=\mathbf{G \theta}\left[\frac{\mathrm{t}^{2}}{4}-\mathrm{y}^{2}\right]
\end{aligned}
$$

27th Aprl 2017

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

## TORSION OF THIN WALLED TUBES:

$$
\begin{aligned}
& \tau_{\mathrm{zy}}=-\frac{\partial \Phi}{\partial \mathrm{x}}=0 \\
& \tau_{\mathrm{zx}}=\frac{\partial \Phi}{\partial y}=-2 G \theta y
\end{aligned}
$$

These shears are shown in fig.
The maximum shear stress occurs at the surfaces $\quad y= \pm t / 2$

$$
\begin{aligned}
& \left(\tau_{z x}\right)_{\max }= \pm G \boldsymbol{G} t \\
& T=2 \iint \Phi d x d y \\
& \quad=2 G \theta \int_{-b / 2}^{b / 2} d x \int_{-t / 2}^{t / 2}\left[\frac{t^{2}}{4}-y^{2}\right] d y
\end{aligned}
$$

## TORSION OF THIN WALLED TUBES:

$$
\begin{aligned}
& \mathrm{T}=\frac{1}{3} \mathbf{b t} \mathbf{t}^{3} \mathbf{G} \boldsymbol{\theta} \\
& \tau_{\mathrm{zx}}=-\mathbf{2 G} \boldsymbol{y}
\end{aligned}
$$

The above equs. Can be applied to rolled sections of different shapes

$$
\mathbf{T}=\sum\left[\frac{1}{3} \mathbf{b} \mathbf{t}^{3}\right] \mathbf{G} \boldsymbol{\theta}
$$

## TORSION OF THIN WALLED TUBES:

A 30 cm I beam with flanges and web 1.5 cm thick s subjected to a torque $\mathrm{T}=4900 \mathrm{~N}-\mathrm{m}$. Find the maximum shear stress and angle of twist per unit length. In order to reduce the stress and angle of twist, 1.25 cm flat plate are welded on to the sides of the section as shown by dotted lines. Find the maximum shear stress and angle of twist.


## TORSION OF THIN WALLED TUBES:



$$
\mathrm{T}=\left(\sum \frac{\mathrm{bt}^{3}}{3}\right) \mathrm{G} \theta
$$

$$
\tau_{\mathrm{zx}}=-\mathbf{2 G} \theta \mathbf{y}
$$

## TORSION OF THIN WALLED TUBES:



27th Aprl 2017
Presented to S4 ME students of RSET by Dr. Manoj G Tharian
TORSION OF THIN WALLED TUBES:

$$
\begin{align*}
2 G \theta & =\frac{1}{A_{1}}\left[a_{1} q_{1}-a_{12} q_{2}\right]  \tag{2}\\
2 G \theta & =\frac{1}{A_{2}}\left[a_{2} q_{2}-a_{12} q_{1}\right]
\end{align*}
$$

## TORSION OF THIN WALLED TUBES:

## Open Section:

$\tau_{\max }=107.512 \mathrm{MPa}$
$\theta=0.1075$ radians per $m$ length

## Closed Section:

$\tau_{\text {max }}=2.371 \mathrm{MPa}$
$\theta=2.063 \times 10^{-4}$ radians per m length

## SUMMARY: TORSION OF CIRCULAR SHAFTS



## SUMMARY: CIRCULAR SHAFT

$$
\mathrm{J}=\frac{\pi\left(\mathrm{d}_{1}{ }^{4}-\mathrm{d}_{2}{ }^{4}\right)}{32}
$$

G - Modulus of Rigidity. in
$\mathrm{N} / \mathrm{m}^{2}$.

$$
\mathrm{J}=\frac{\pi \mathrm{d}^{3} \mathrm{t}}{4}
$$

$\theta$ - Angular Twist in Radians.
I - length considered in m.
27th Aprl 2017
Presented to S4 ME students of RSET by Dr. Manoj G Tharian

SUMMARY: TORSION OF NON CIRCULAR SHAFT ST VENANT METHOD

$\frac{\partial^{2} \Psi}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \Psi}{\partial \mathrm{y}^{2}}=0$

$\left(\frac{\partial \psi}{\partial \mathrm{x}}-\mathrm{y}\right) \frac{\mathrm{dy}}{\mathrm{ds}}-\left(\frac{\partial \psi}{\partial \mathrm{y}}+\mathrm{x}\right) \frac{\mathrm{dx}}{\mathrm{ds}}=0$
$J=\iint_{R}\left(x^{2}+y^{2}+x \cdot \frac{\partial \Psi}{\partial y}-y \cdot \frac{\partial \psi}{\partial x}\right) d x \cdot d y$
For Elliptical Section:

$$
\mathrm{T}=\mathrm{G} . \mathrm{J} . \theta
$$

$$
\boldsymbol{\tau}_{\mathrm{yz}}=\boldsymbol{G} \gamma_{\mathrm{yz}}=\mathrm{G} \boldsymbol{\theta}\left(\frac{\partial \psi}{\partial \mathrm{y}}+\mathrm{x}\right) \quad \boldsymbol{\tau}_{\mathrm{xz}}=\boldsymbol{G} \gamma_{\mathrm{xz}}=\mathbf{G} \boldsymbol{\theta}\left(\frac{\partial \psi}{\partial \mathrm{x}}-\mathrm{y}\right)
$$

$$
\begin{aligned}
& \tau_{\max }=\frac{2 \mathrm{~T}}{\pi a b^{2}} \\
& \theta=\frac{\mathrm{T}}{\mathrm{G}} \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\pi \mathrm{a}^{3} \mathrm{~b}^{3}}
\end{aligned}
$$

$$
\mathrm{u}=-\theta \cdot \mathrm{y} \cdot \mathrm{z} \quad \mathrm{v}=\theta \cdot \mathrm{x} \cdot \mathrm{z} \quad \mathrm{w}=\theta \cdot \psi(\mathrm{x}, \mathrm{y})
$$

SUMMARY: TORSION OF NON CIRCULAR SHAFTS PRANDTLS METHOD

Summary of Prandtls Method:
$\Phi$ is a constant around the boundary.
For a solid section, around the boundary

$$
\Phi=0
$$

$$
T=\iint_{R} 2 \Phi d x d y
$$

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=2 G \theta
$$

$$
\tau_{\mathrm{zx}}=\frac{\partial \Phi}{\partial \mathrm{y}} \quad \tau_{\mathrm{zy}}=-\frac{\partial \Phi}{\partial \mathrm{x}}
$$

Prandtls Membrane Analogy:
If the membrane height $z$ remains zero at the boundary The twist moment is numerically equal to twice the volume under the membrane.

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=-\frac{P}{F}
$$

The slopes of the membrane are then equal to the shear stresses.


SUMMARY: THIN WALLED CLOSED SECTION SUBJECTED TO TORSION


$$
\mathrm{T}=2 \mathrm{qA}
$$

$$
2 \mathrm{G} \theta=\frac{\mathrm{q}}{\mathrm{~A}} \oint \frac{\mathrm{dS}}{\mathrm{t}}
$$

$$
\mathrm{T}=\mathrm{G} \cdot \frac{4 \mathrm{~A}^{2}}{\oint \frac{\mathrm{ds}}{\mathrm{t}}} \theta
$$

27th Aprl 2017


$$
T=2 A_{1} q_{1}+2 A_{2} q_{2}
$$

$$
2 G \theta=\frac{1}{A_{1}}\left[\mathbf{a}_{1} q_{1}-\mathbf{a}_{12} q_{2}\right]
$$

$$
2 G \theta=\frac{1}{A_{2}}\left[\mathbf{a}_{2} \mathbf{q}_{2}-\mathbf{a}_{12} \mathbf{q}_{1}\right]
$$

Presented to S4 ME students of RSET by Dr. Manoj G Tharian

SUMMARY: THIN WALLED OPEN SECTION SUBJECTED TO TORSION


SUMMARY: THIN WALLED OPEN SECTION SUBJECTED TO TORSION:


27th Aprl 2017

## FAQS

1. Discuss the importance of Shear Flow?
2. How will you find torsion effect in a solid bar of non-circular crosssection? Give a standard methodology.
3. Explain Prandtl's method.
4. Explain St. Venant's method.
5. Explain Prandtls. Membrane analogy for torsion of non circular bars.
6. An elliptical shaft of semi axes $a=0.05 \mathrm{~m}$ and $b=0.025 \mathrm{~m}$ and $\mathrm{G}=$ 800 Gpa is subjected to twsting moment of $1200 \pi$ N.m. Determine the maximum shear stress and the angle of twist per unit length
7. Solve the torsion problem of elliptical shaft using Prandtls method.
8. Establish the shape of the prismatic bar for which $\Psi=A\left(y^{3}-3 x^{2} y\right)$ is a possible warping function.

## FAQS

9. With neat sketches and assumption, derive the torsion formula for any two thin walled open sections.
10. Explain the techniques for finding torsion of thin walled closed section.
11. Derive the expression for torsion of thin walled open and closed sections.
12. Problems discussed in the class
