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TORSION OF NON-CIRCULAR BARS:

Prandtl’s Stress Function Method

Prandtl’s Stress function ¢ is defined as

9 _ % 1)
Ty = o Tay = T 9x
ay X
When, O = Oy = 0, =07, =0; 1, and 1, are the only non

vanishing components of stress the equations of elasticity are given
below

Equilibrium Equation

0t _ %oy _ 0 (Since the stresses are same in every cross
o0z 0z
section)

a;_zx + a;_zy = 0 (From the third equilibrium equation)
X y
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TORSION OF NON-CIRCULAR BARS:

Hooke’s Law

The strain components €xx = &yy = €22 = Yxy = 0

_ 1 Jd®
Yzy " Ox
— (2
_ 1 o9
sz - G IGy
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TORSION OF NON-CIRCULAR BARS:
Compatibility Equation

The two relevant Compatibility equations for this problem are

B (Oym ayg_oayyz _ azggo
( + ) =2 6/62

ax \ dy /éz ax
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TORSION OF NON-CIRCULAR BARS:

Substituting for y,, and y,, from equ. (2) the above two equs

becomes

9 (ach ach) — 0
ax \ox2 = ay2/)

3 /%0 0’0
P ( =T _2) =0
dy \ 0x ay

0’ + 0’ F ( t t) (3)
— s T = a constan -

ox? = oy?
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TORSION OF NON-CIRCULAR BARS:

Boundary Condition

Ny Ty, + Ny Ty, + nz/é; /

This gives
Lo _o
Mx dy ny ox
dd dy N 9P dx
dy ds odxds
do
ds

@ is a constant around the boundary.
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TORSION OF NON-CIRCULAR BARS:

For a solid section, =0 —— (1)
around the boundary

On the end faces moment about O should be equal to the applied

oraue: T = ffi (tyX — Tyy) dx.dy

A P
= —ffR (X§+ ya) dx.dy

S [(a(“”‘) a;iy))— 20| dx.dy

=~ fl |22+ 22| axay+ [f, 20dsdy
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TORSION OF NON-CIRCULAR BARS:

Using Gauss theorem,

T=§ [Cb.x.nx+ C]D.y.nV]dxdy+ ff 2ddxdy
s i R

Since @ is zero around the boundary the first integral becomes zero

and the above equation becomes
T = ﬂ. 2ddxdy — ()
R

To find out the constant F in equ 3, taking LHS of equ 3 we get

e o i} ay
e +io=G [ﬂ_ i]
ax ay ay ax
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TORSION OF NON-CIRCULAR BARS:

e e 9 [du  ow a [av  ow
Sregreo Gl -2 )
ox ay dy Loz ox 0x loz ay

2o o (i ou @D
ax? + ay? 9z Loy ox
a
= G- [2w
dz [ Z]

Where w, is the rotation of the element at (x,y) about the z axis.

0
— |w,]| isthe rotation per unit length denoted by 6

0z
OO TO_ 66— (n)
axz = 9y?
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TORSION OF NON-CIRCULAR BARS:

Summary of Prandtls Method:
@ is a constant around the boundary.

For a solid section, around the boundary

®o=0 —— ()
Tzﬂ 2@dxdy —— (1)
R
920 %0
it = - _ —— (I
ot gya = —2G6 ()
a® 00
Tox = a Ty = T ax
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TORSION OF NON-CIRCULAR BARS:

Prandtl’s Membrane Analogy

z

F= —>F |aAy
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TORSION OF NON-CIRCULAR BARS:

Prandtl’'s membrane analogy is very much useful for solving torsion
problems involving complicated shapes. Consider a thin
homogeneous membrane (like rubber) stressed with uniform
tension and fixed at its edges which is having the same shape as the
cross section of the shaft in the xy plane.

When the membrane is subjected to uniform lateral pressure P it
undergoes a small displacement Z, where Z is a function x & y
Consider the equilibrium of an infinitesimal element ABCD of the
membrane after deformation. Let F be the uniform tension per unit

length of the membrane.
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TORSION OF NON-CIRCULAR BARS:

The value of the initial tension is large enough to ignore its changes

when the membrane is blown up by a small pressure.
Force on face AD = F x Ay

Angle made by this force with x axis is B

Slopeof AB= tanf} = j—i
Hence the component of FAy along z axis = FAyZ—i
(for very small angle Sin B = tan B)

Force on BC=F x Ay

Angle made by this face with x axisis B+ A B
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TORSION OF NON-CIRCULAR BARS:

0z d [0z
SlopeatB = P + &(&) Ax

d /0z

The component of the force in the z direction is FAy [% t (&) AX]

Similarly the component of force FAx acting on faces AB and CD are

FAxg—: and FAx [g—; + aiy(z_;) Ay]
The resultant force in the z direction is
—FAy s+ FAy |+ - (5) AX]—FAxg—; + FAX [g—; t aiy (g—;) Ay]
=F a_zz + &AxAy
ox*  oy?
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TORSION OF NON-CIRCULAR BARS:

The force due to the pressure P acting on the membrane element
ABCD is PAxAy.

For equilibrium

92z 9%z
_l__

axZ 3y? AxAy = —PAxAy

Comparing the above equ. With the Prandtl’s Torsion equ.

%0 0%9
T o2 —2GHo
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TORSION OF NON-CIRCULAR BARS:

If we adjust the membrane tension F or the air pressure P such that
P/F becomes numerically equal to 2G6 the above two equations
becomes identical.

If the membrane height z remains zero at the boundary contour of
the section, then the height z of the membrane becomes
numerically equal to the torsion stress function.

The slopes of the membrane are then equal to the shear stresses.
The twist moment is numerically equal to twice the volume under

the membrane. 30 a0

Ty = a Ty = T Tsz 2ddxdy
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TORSION OF NON-CIRCULAR BARS:

Membrane —_

Squarc Frame

A steel plate with a square hole was used. Rubber sheet was rigidly
clamped at the edges of the hole and made to bulge by applying

pressure from beneath the plate. The resulting bulges (torsional hills)

for the square hole is shown in Figures.
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TORSION OF NON-CIRCULAR BARS:

Solving Torsion of Elliptical Shaft Using Prandtls Method:
a0

. 229 P
The torsion equ 5+ 5z = —268  and boundary condition ® = 0 are

satisfied by assuming: x? y? )
=m |5 +5—
a? b2
Where m is constant whose value has to be determined.
92  8%¢
VP = —+ — = —2GO
0 ox2 + dy?
an (Zx) 020 2m
— = m\|— —_— e
dx a? ox2 a2
2
00 _ (Zy) o0_ mm
ay = b2 oy b
Presented to S4 ME students of RSET
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TORSION OF NON-CIRCULAR BARS:

Substituting in the torsion equation we get

2m(§+bl—2)=—2(}e m=—(’"2b2)Ge

aZ+b?
Substituting for m in the expression for ¢:
. a2b2 XZ Y2
0= _(a2+b2) a_2+§_ I]GG

The shear stress components are:

2

a0 a?b2 \ 2 _ 2a
Ty = — = — Z6o = —(z5:) GOy

oy a2+b2/ b2 a“+

2

Gl ( a2b? ) 2x 2b

zy ox  \a2+b2/ b2 22 + b2 GOx
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TORSION OF NON-CIRCULAR BARS:

Resultant stress is given by:

+2G6
T= |13, + 12, = ————+/a*y? + b*x?
vz XZ 2 1 b2 y

Equating the moment due to shear stress to the external torque:
T= ffA (szx_ TZXY)dA

T= ﬂA ((azi%) Gox? + (%;) GOy?)dA

— 269 JI, @%y*+b*x*)dA

aZ+b?
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TORSION OF NON-CIRCULAR BARS:

mtha’
We know that, Iyy = ffA x2 dA Iyy = 2
_ 2 mab?
Lyx = ffA y- dA [ = 2
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TORSION OF THIN WALLED TUBES:

Torsion of Thin Walled Tubes

Presented to S4 ME students of RSET
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23

27th Aprl 2017

TORSION OF THIN WALLED TUBES:

Force acting on the elementary length AS
AF = ttAS
= qAS

Torque due to the shear stress on the elemental length

AT = qASh.
= 2qAA
AA is the area of the triangle enclosed at O by the arc AS. Hence the
total torque, T = Y 2qAA
= 2qA

Presented to S4 ME students of RSET
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TORSION OF THIN WALLED TUBES:

Strain energy stored due to torsion of elemental length

27th Aprl 2017

TORSION OF THIN WALLED TUBES:

AU =

% (TtAS)6

= %(ttAS) y Al

1 T
= E(TtAS) G Al

q?al AS

26
The total strain energy for the tube per unit length
TZ

U= ——
BAZG

t

jg_

(since T =2gA)

Presented to S4 ME students of RSET
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Twist per unit length (Al = 1)
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du

dT

d

dT

(

.

2AG

TZ
8AZG

ds

$

ds
t

)
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Castiglano’s Theorem: If the strain
energy ‘U of a linearly elastic
structure is expressed as function
of generalized force Q;, then the
first partial derivative of U with
respect to any one of the
generalized force Q; is equal to the
corresponding generalized
displacement g;.

(since T = 2qA)

Presented to S4 ME students of RSET
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TORSION OF THIN WALLED TUBES:

Torsion of Thin Walled Multiple Cell Closed Sections

/%:‘h'%
T/x—‘— [ p—

o |l cenz Il cemz |1]q,
Area— A2 Area—Al

| I

L. — L

Torque for the entire section, T=T,+T,
T=2Aq,+2A,q, —— (1)
(Bredt Batho Equ)

Then 2GO = 1 qu;ds
A t

27th Aprl 2017 Presented to S4 ME students of RSET
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TORSION OF THIN WALLED TUBES:

Let,
a; = 955 for celll including web
t
ds . .
a, = ggT for cell 2 including web
ds
ag, = 9ST for web
Then for cell 1 and cell2 equ can be written as
1
2GO = Ap la,q; — 21292 - (2)
1
266 = A [azq; — a12q;] —— (3)

Equs 1, 2 &3 can be used to find out q,, q,, & g5
27th Aprl 2017 Presented to S4 ME students of RSET
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TORSION OF THIN WALLED TUBES:

T=2Aq,+2A,q, (1)
1
2GO = Ay [a1qy — a12q2,] —— (2)
1
2GO = Ay 2292 — a1204] ——— (3)
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TORSION OF THIN WALLED TUBES:

A two cell thin walled box as shown in fig below is subjected to a
torque of 10000N-m Determine the internal shear flow, the stresses at
points A, B and C. Also find the angle of twist of per unit length. A; =
680 cm?; A, = 2000 cm? and G = 80 x 106 kPa

0.09¢cm s=63cm

0.08'cm

2Z‘hAprlZOl7 FIESCIILEU LU O4 IVIEC DLUUrCHi vl o
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TORSION OF THIN WALLED TUBES:

A two cell thin walled box as shown in fig below is subjected to a
torque of 10000N-m Determine the internal shear flow, the stresses at
points A, B and C. Also find the angle of twist of per unit length. A, =

680 cm?; A, = 2000 cm? and G = 80 x 106 kPa
1
2GH = A [a;191 + a;292] T = 2A,q; + 2A5q;
1 = 14940N
2G6 = ™ [a2q; + a;2q,] e /m
2

q; = 19920.3N/m
q; = 0.75q>

T, =249MPa T =5534MPa ¢ —2213MPa

0 = 1.36 radians per m
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TORSION OF THIN WALLED TUBES:
Determine the shear stress induced and the angle of twist per unit
length of a hollow shaft of dimensions 80 mm x 40 mm and wall

thickness 5 mm when subjected to a torque of 1 kN-m. G = 1.3 x 10*

MPa. i 40 mm i
T=29A === = —
_ 4 ¢ds Smm [+
ZAG t

80 mm
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TORSION OF THIN WALLED TUBES:

Determine the shear stress induced and the angle of twist per unit
length of a hollow shaft of dimensions 80 mm x 40 mm and wall

thickness 5 mm when subjected to a torque of 1 kN-m. G = 1.3 x 10*

MPa. | 40 mm |
A=32x10"3 N |
. [ _; _
q=£=156250 N/m Smﬂ)_:<_ :
T=2=31.25MPa i l £
t i | £
0]
q[dS 156250 i |
AJ t  32x10° ! |
 p—— — | v
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TORSION OF THIN WALLED TUBES:

Torsion of Bars with Rectangular Sections y
A B
(]
h I [ — "
D, b €

Consider a rectangular bar subjected to a torque T. The thickness t
be small compared to the width b. The section consists of only one
boundary and the value of the stress function ¢ around this

boundary is zero. 2o 9o

+55=-2GO

ax2  oy?

Presented to S4 ME students of RSET
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TORSION OF THIN WALLED TUBES:

The stress function is taken independent of x i.e., ¢ (x,y) = d(y).

o
i —2G0
Integrating, ® = —GOy* + a;y + a,

Since ® =0 at the boundary, ® =0 at
y=1Y,

2

Substituting a, =0&a, = %
—go [£_ 2
® =GO |= - y?
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TORSION OF THIN WALLED TUBES:

o
sz— —5—0

L))
Tox = a—y= —2G9y

These shears are shown in fig.

. — t
The maximum shear stress occurs at the surfaces ¥ = * /2

(sz)max = iGet
T =2 [[ ®dxdy

Y
_ b/2 N
= 2GO f—b/z dx f-t/z [4 y ]dy
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TORSION OF THIN WALLED TUBES:

T=§bﬁGe
T,x = —2GOy

The above equs. Can be applied to rolled sections of different
shapes

T=2Emﬂce

27th Aprl 2017 Presented to S4 ME students of RSET 37
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TORSION OF THIN WALLED TUBES:

A 30 cm | beam with flanges and web 1.5 cm thick s subjected to a
torque T = 4900 N-m. Find the maximum shear stress and angle of twist
per unit length. In order to reduce the stress and angle of twist, 1.25 cm
flat plate are welded on to the sides of the section as shown by dotted
lines. Find the maximum shear stress and angle of twist.

30cm

1.25cm

30 cm

27th Aprl 2017 Presented to S4 ME students of RSET 38
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TORSION OF THIN WALLED TUBES:

30cm

1.25cm

T= (Zb?tg) GO

T, = —2GOy

30cm

27th Aprl 2017
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TORSION OF THIN WALLED TUBES:
b 3

30cm

T= (Z%) Go

1.25cm

= —2GOy

Tox

bt?
Z ? = 56.97 Cll"l4

30cm

6 = 0.1075 radians per m length

| T = 107.5 MPa

27th Aprl 2017
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30cm
1.25cm
0|0

T=2A,q, +2A,0q, — (1)

2GO = [31Q1 a;2q,] — (2)

2G0O = A_z [azqz — a52q;] — (3)

Presented to S4 ME students of RSET
27%h Apri 2017 by Dr. Manoj G Tharian 4
TORSION OF THIN WALLED TUBES:
30cm
1.25cm
A;|=A, =14.375 x 28.75 = 0.04133m?

4900 = 4x0.04133 xq

30 cm

il

q = 29641 N/m

Ty = 2.371 MPa
§ = 2.063 x 10~* radians per m length

T=2A,q;+2A,q, — (1)

2GO = [alfh a;>q;] (2)

2G0O = ™ [azqz apq —— (3)

Presented to S4 ME students of RSET
27th Aprl 2017
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TORSION OF THIN WALLED TUBES:

Open Section: Closed Section:

1., = 107.512 MPa Toax = 2.371MPa

6 =0.1075 radians per m length 0 =2.063 x 10 radians per m length

27th Aprl 2017 Presented to S4 ME students of RSET 43
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SUMMARY: TORSION OF CIRCULAR SHAFTS
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SUMMARY: CIRCULAR SHAFT

T_T_ GO
] r 1
nd?

I=%

T — Applied Torque in N-m.
J—Polar Moment of Inertia m*.

T — Shear Stress at a radius r in
N/m?2.

G — Modulus of Rigidity. in
N/m?2.
0 — Angular Twist in Radians.

| - length considered in m.

27th Aprl 2017 Presented to S4 ME students of RSET
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SUMMARY: TORSION OF NON CIRCULAR SHAFT ST VENANT METHOD

=71Plxy)

For Elliptical Section:

d 0
] = ffR (x2+ y* +x.% — y.%) dx. dy R 2T
max — T[abz
T=G]9
C = = ﬂ_ T 2 b2
s = () SO E) | g TEen

u= —G_y_z V= 0.X.7 W = ew(XPY)

27th Aprl 2017 Presented to S4 ME students of RSET
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SUMMARY: TORSION OF NON CIRCULAR SHAFTS PRANDTLS METHOD

Summary of Prandtls Method:

® is a constant around the
boundary.

For a solid section, around the
boundary

®=0
T= ff 2ddxdy
R

Prandtls Membrane Analogy:

If the membrane height z
remains zero at the boundary
The twist moment is
numerically equal to twice
the volume under the
membrane.

aaz—(f+az—(§=zce ¥z 9z _ P
x=  dy ox2  0dy2  F
. oD The slopes of the membrane
T, = oy Ty = ~3x are then equal to the shear
stresses.
27th Aprl 2017 Presented to S4 ME students of RSET a7
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SUMMARY: THIN WALLED CLOSED SECTION SUBJECTED TO TORSION

e,

fas

{ A< )|
Futep R \\\t\

LUPPORT ‘ e

foi T=100 Nw
» 2
SOmmn
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SUMMARY: THIN WALLED CLOSED SECTION SUBJECTED TO TORSION

|9 |o

= qu T=2A,q, +2A,0q,
260 =3 § L 1
At 2GO = A la;q; — a;2q;]
2 1
T=0620 2G0 = A [a2q; — a42q4]
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by Dr. Manoj G Tharian

SUMMARY: THIN WALLED OPEN SECTION SUBJECTED TO TORSION
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SUMMARY: THIN WALLED OPEN SECTION SUBJECTED TO TORSION:

paff

7t
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FAQS

Discuss the importance of Shear Flow?

2. How will you find torsion effect in a solid bar of non-circular cross-
section? Give a standard methodology.

3. Explain Prandtl’s method.

4. Explain St. Venant’s method.

5. Explain Prandtls. Membrane analogy for torsion of non circular bars.

6. An elliptical shaft of semi axes a =0.05mand b =0.025mand G =

800 Gpa is subjected to twsting moment of 1200 t N.m. Determine
the maximum shear stress and the angle of twist per unit length

Solve the torsion problem of elliptical shaft using Prandtls method.

8. Establish the shape of the prismatic bar for which ¥ = A(y® — 3x%y)
is a possible warping function.

27th Aprl 2017 Presented to S4 ME student_s of RSET 52
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FAQS

9. With neat sketches and assumption, derive the torsion formula for
any two thin walled open sections.

10. Explain the techniques for finding torsion of thin walled closed
section.

11. Derive the expression for torsion of thin walled open and closed
sections.

12. Problems discussed in the class
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